Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Coastal communities often address shoreline erosion through beach nourishment, adding externally sourced sand to widen beaches for recreation and property protection. While nourishment enhances beachfront property values, the need for periodic maintenance creates interdependencies where the actions of neighboring communities affect local shoreline dynamics. Using a coupled model of two neighboring communities, we examine the interplay between community nourishment decisions and the redistribution of nourishment sand. We find that the value a community places on wider beaches not only influences their propensity to nourish, but also their and their neighbors' nourishment efficiency and net benefits. Communities that nourish more frequently tend to have lower nourishment efficiency, as sand is redistributed alongshore, benefiting less‐active neighbors at their expense. A 20‐year New Jersey case study confirms that communities that nourish more have lower nourishment efficiencies, including instances where less wealthy communities nourish significantly more, enabling wealthier neighbors to enjoy higher efficiencies—suggesting that such dynamics may already be shaping real‐world coastal outcomes. In future scenarios, we simulate the effects of rising sand costs and accelerated erosion due to sea‐level rise under coordinated and non‐coordinated planning methods, finding that less wealthy communities experience a higher risk of beachfront property loss under non‐coordination, exacerbating disparities in coastal management. These findings underscore the importance of inter‐community cooperation in optimizing economic and environmental outcomes in beach nourishment strategies.more » « lessFree, publicly-accessible full text available August 14, 2026
-
Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of theEEDandEZH2genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointingITGB4,LAMA3, andLAMB3as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found thatCENPF,CKS1B, andMKI67showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories.more » « less
-
Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity.more » « less
-
Radio-echo sounding (RES) has revealed an internal architecture within both the West and East Antarctic ice sheets that records their depositional, deformational and melting histories. Crucially, RES-imaged internal-reflecting horizons, tied to ice-core age–depth profiles, can be treated as isochrones that record the age–depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice dynamical processes on large scales, which are complementary to but more spatially extensive than commonly used proxy records (e.g. former ice limits constrained by cosmogenic dating or offshore sediment sequences) around Antarctica. We review the progress towards building a pan-Antarctic age–depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last 6 decades (focussing specifically on those that detected internal-reflecting horizons) and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores or modelling) the RES-imaged isochrones. We summarise the scientific applications for which Antarctica's internal architecture has been used to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) reconstruction of surface mass balance on millennial or historical timescales; (3) estimation of basal melting and geothermal heat flux from radiostratigraphy and comprehensive mapping of basal-ice units to complement inferences from other geophysical and geological methods; (4) advancement of the knowledge of volcanic activity and fallout across Antarctica; and (5) refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour and then to reduce uncertainties in projecting future ice-sheet behaviour.more » « lessFree, publicly-accessible full text available October 20, 2026
An official website of the United States government
